Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yao-Cheng Shi* and Hong-Jian Cheng

School of Chemistry, Yangzhou University, 130 XiMenWai Street, Yangzhou 225002, People's
Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.053$
$w R$ factor $=0.190$
Data-to-parameter ratio $=15.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

3-[2-(Hydroxymethyl)anilino]-1-phenyl-but-2-en-1-one

The title compound, $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$, has been synthesized by the condensation reaction of benzoylacetone and 2-hydroxymethylaniline. The molecules are connected via O $\mathrm{H} \cdots \mathrm{O}(=\mathrm{C})$ hydrogen bonds, forming centrosymmetric $R_{2}^{2}(16)$ dimers.

Comment

Enaminones have been studied extensively, not only because of plentiful reaction chemistry (Christoffers et al., 2003; Tietze et al., 1989), but also owing to their applications in coordination chemistry (Kim et al., 2001; Doherty et al., 1999) as well as chiral auxiliaries in organic synthesis (Christoffers, 2003). As part of an ongoing investigation of the chemistry of enaminones, compound (I) has been synthesized by the condensation of benzoylacetone and 2-hydroxymethylaniline (Shi et al., 2004, 2005) and its crystal structure has been determined (Fig. 1). An organometallic analog of (I), hereafter (II), has already been studied (Shi, 2005).

(I)

(II)

The bond lengths and angles of the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ system in (I) are similar to the corresponding values in (II) (Table 1). For (I) and (II), the bond lengths in the $\mathrm{O}=\mathrm{C}-$ $\mathrm{C}=\mathrm{C}-\mathrm{N}$ system indicate electron delocalization (Gilli et al., 2000). The dihedral angles between the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ system and the planes of the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 11-\mathrm{C} 16$ rings in (I) are 18.94 (14) and 41.06 (12) ${ }^{\circ}$, respectively. The corresponding angles in (II) are 5.4 (3) and $67.8(3)^{\circ}$, respectively. The bonds linking the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ system and the aromatic ring in (I) and (II) are typical single bonds (Csp ${ }^{2}$ Csp ${ }^{2}$), suggesting that the C1-C6 benzene ring in (I) and the substituted cyclopentadienyl ring in (II) are not involved in the conjugation of the $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{N}$ system.

As in (II), the strong intramolecular hydrogen bond between the enamine N atom and the carbonyl O atom in (I) stabilizes the enaminone. Furthermore, intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonds form centrosymmetric $R_{2}^{2}(16)$ dimers. Unlike in (II), $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) are also observed in (I).

Experimental

An ethanol solution of benzoylacetone and 2-(hydroxymethyl)aniline (1:1) was refluxed for 28 h . After removal of the solvent, the residue was recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and diethyl ether $(1: 1, v / v)$ at 278 K to afford the yellow compound (I) (yield, 52\%; m.p., 391.2-392.6 K).

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{2}$
$M_{r}=267.32$
Monoclinic, $P 2_{1} / c$
$a=8.5030$ (17) £
$b=11.543$ (2) \AA
$c=14.717$ (3) \AA
$\beta=102.74(3)^{\circ}$
$V=1408.9$ (5) \AA^{3}
$Z=4$
$D_{x}=1.260 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=9-14^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295 \mathrm{~K}$
Block, yellow
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4

diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.953, T_{\text {max }}=0.984$
2957 measured reflections
2766 independent reflections
1867 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.190$
$S=1.08$
2766 reflections
184 parameters
H-atom parameters constrained

$$
\begin{aligned}
& R_{\text {int }}=0.028 \\
& \theta_{\max }=26.0^{\circ} \\
& h=0 \rightarrow 10 \\
& k=0 \rightarrow 14 \\
& l=-18 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1005 P)^{2}\right. \\
& +0.3124 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}<0.001 \\
& \Delta \rho_{\text {max }}=0.21 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.19 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.023 \text { (6) }
\end{aligned}
$$

Figure 1
Molecular structure of (I). Displacement ellipsoids are drawn at the 30\% probability level. The intramolecular hydrogen bond is shown as a dashed line.

All H atoms were placed at geometrically idealized positions, and treated as riding atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{O}-$ $\mathrm{H}=0.82 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ or $1.5 U_{\text {eq }}(\mathrm{O})$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

The authors thank the Natural Science Foundation of Jiangsu Province (05KJB150151) and Yangzhou University for financial support.

References

Christoffers, J. (2003). Chem. Eur. J. 9, 4862-4867.
Christoffers, J., Kreidler, B., Unger, S. \& Frey, W. (2003). Eur. J. Org. Chem. pp. 2845-2853.
Doherty, S., Errington, R. J., Housley, N., Ridland, J., Clegg, W. \& Elsegood, M. R. J. (1999). Organometallics, 18, 1018-1029.

Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
Gilli, P., Bertolasi, V., Ferretti, V. \& Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405-10412.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Kim, J., Hwang, J. W., Kim, Y., Lee, M. H., Han, Y. \& Do, Y. (2001). J. Organomet. Chem. 620, 1-7.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shi, Y.-C. (2005). Acta Cryst. E61, m811-m812.
Shi, Y.-C., Sui, C.-X., Song, H.-B. \& Jian, P.-M. (2005). J. Coord. Chem. 58, $363-$ 371.

Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. \& Hu, X.-Y. (2004). Polyhedron, 23, 15-21.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Tietze, L. F., Bergmann, A., Brill, G., Brüggemann, K., Hartief, U. \& Voss, E. (1989). Chem. Ber. 122, 83-94.

